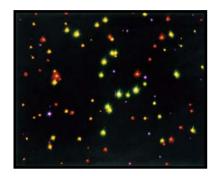
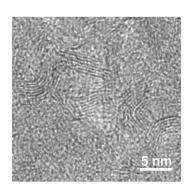
SRI International - an Interdisciplinary Approach to Innovation in Nanotechnology

Lawrence H. Dubois Vice President Physical Sciences Division

SRI International 333 Ravenswood Ave. Menlo Park, CA 94025


larry.dubois@sri.com

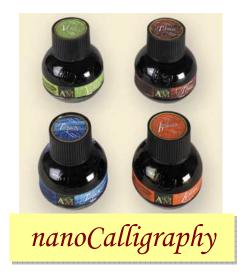

Nanotechnology . . .

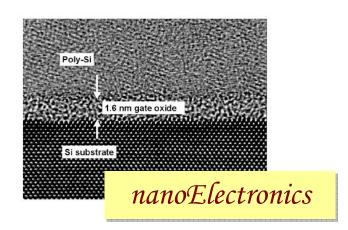
Exploiting *unique* properties at the nanoscale to revolutionize industry

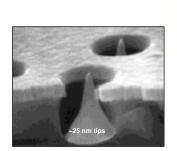
- Electronics/computers
- Energy
- Biomedical
- Plastics/packaging
- Automotive
- Entertainment
- Clothing
- and many others

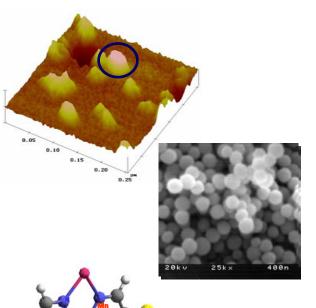
Challenges of Nanotechnology: Multidisciplinary

- Chemistry
- Physics
- Materials Science
- Electrical / Mechanical Engineering
- Biology / Medicine
- Computer Science
- Tools Development
- Chemical Engineering / Scale-up (they may be small, but you need a lot!)
- Safety / Environment / Toxicology




Nanotechnology is All Around Us and is Application Driven





Innovation in Nanotechnology: an Inherently
Multi- / inter- / trans- disciplinary Process

NanoTools / NanoFabrication	 Spectroscopy Combinatorial materials synthesis Self-assembly Atomic force/microwave microscopy
NanoBiomedical	 MRI contrast enhancement Engineered bio-molecular nanodevices Single molecule detection Molecularly imprinted polymers
NanoEnergy	 Battery and fuel cell electrodes Bimodal catalysts CO₂ sequestration H₂ production, separation and storage
NanoMaterials	 Carbon nanotubes/nanoparticles Nanoparticle synthesis Boundary layer and surface modification Nanoparticle composites and applications Nanoporous materials for separation and absorption
NanoElectronics and NanoPhotonics	 Molecular electronics Spintronics Semiconductor nanodevice modeling Nano-optical materials and devices Modeling
NanoSociety	 Government policy Education program Technology monitoring and technology assessment Process economics

Challenges for a Nanotechnology Education

- Because nanotechnology is inherently multidisciplinary, how does it fit into a standard curriculum?
- Given a curriculum, how do you train teachers to teach nanotechnology?
- Are there macroscopic manifestations of nanoscience / nanotechnology?
- How do you capture the excitement of nanotechnology without the hype?
- How does one answer the question "is there a downside to nanotechnology?"
- Is there is really a career for a "nanotechnologist?"

