Advancing Nanoscience Education Workshop

A buckyball moving helium through a nanotube. *Courtesy of Dr Don Noid and Dr Bobby Sumpter* Overview and Introductions Patti Schank, SRI March 29, 2005

NanoSense Project Copyright 2005 SRI International

Agenda: Day 1 (Tuesday)

- Introductions, survey summary (9-10:15 am)
- Atlas of Nanoscience, Q&A (10:30-12 pm)
- Lunch and topic/group selection (12-1 pm)
 - Concepts, hands-on experiences, jobs, pathways
- Small working groups (1-5 pm)
 - Identify best practices, needs, approaches (c.f. NABC–Needs, Approach, Benefits, Competition)
 - Shift at 3, except moderator and recorder
- Report progress (5-5:30 pm)
- 5 minutes each group on progress, plans for
 NanoSense presenting tomorrow

2

Agenda: Day 2 (Wednesday)

- Breakfast (8:30)
- Groups finalize presentations (9-10 am)
 - On the order of 5-10 slides per group
- Groups present, 15 min each (10-11:30)
 - A few industry guests will join
- Discussion, reflection, next steps (11:30-12:30)
- Lunch and workshop evaluation (12:30-1:30)
 - Planning collaborations and joint grant proposals?
- Workshop report writing (afternoon)

– Workshop staff, volunteers who are interested NanoSense

Introductions

- Half a minute each
 - Name
 - Affiliation
 - Primary occupation
 - One or two sentences about your primary interests related to nanoscience education, and/or what you'd like to get out of this workshop

Survey Summary

- What should nanoscience education be?
 - undergraduate (6), high school (5), general public/out-of-school (4), teachers (1)
 - "true cross-disciplinary effort"
 - "exciting way to teach traditional science concepts"
- What should students know starting college?
 - Intro to chemistry (8), physics (6), biology (6), math (3), computer science (2), engineering (2), earth (1)
 - NSES and appreciation for practice, implications
 - Bonding, forces, atomic structure, friction, solubility
 - Problem solving/communication skills (3)

- What concepts should HS students learn?
 - Chemistry: organic; atomic structure, bonding, oxidation and reduction, adhesion, absorption, adoption, electrochem, periodic table
 - Physics: electronic and magnetic properties, electrooptical interaction, density, energy, forces
 - Biology: cells, molecules, DNA, protein
 - Math: calculate forces, metric system, scientific notation
 - Size and scale
 - Knowledge of applications

NanoSenser Problem solving, communication, how to learn

- Better taugh as interdisciplinary, integrated courses or through traditional disciplines?
 - Both, depends (8)
 - Prefer interdisciplinary (8) in ideal world
 - easier at upper level (1)
 - more interesting for students, especially females (1)
 - More examples in disciplines (3)
 - especially chemistry (2)
 - change is slow in academia, best bet is to integrate in disciplines (1)
 - "We lack research...whether or not an integrated or independent approach... is most effective"

- Most crucial foundational concepts?
 - Unique properties at nano vs. macro level (e.g., nanogold vs bulk gold) (4)
 - Surface technology/effects (4)
 - Size and scale (in time and space) (5)
 - Self-assembly (3)
 - Fabrication, control, tools (2)
 - Sense of statistics/averaging (2)
 - Measurement, bonding, forces, energy, quatum states, magnetism (~2)
 - Practical applications, jobs, integrated research (3)

NanoSense_Et

^{nse} Ethics, implications (2)

- Favorite examples?
 - Common examples
 - Self-cleaning clothes/nanofabrics (3)
 - Quantum dots, gold nanoparticles as sensors (3)
 - Clear sunscreen (2)
 - Energy from nano solar panels, clean hydrogen fuel (2)
 - Nanofilters, nanotubes, ferro fluids, STM
 - Need everyday hooks (clothes, hobbies, cool stories, curious phenomena)
 - Molecular Workbench modules
 - Nanofog, nanomayonnaise, Tobacco mosaic virus, T4 bacteriophage, self-cleaning toilets, gecko

- Role of lab experiences?
 - Labs critical (everyone), demos good/okay
 - Assist deep learning, facilitate soft skills
 - Interacting with others, reasoning
 - Should be integrated with lecture
 - Interactive playground
 - Computers, instruments, group tables, remote cameras
 - AFM lab/models, self-assembly demonstrations with magnets or foam, nanomanipulator to explore surfaces

- Recommended tools and materials
 - Molecular Workbench tools, Chemica (5)
 - MRSEC materials (3)
 - AFM (actual, and/or Scharberg's wood model) (2)
 - Nanomanipulator (2)
 - NanoZone (2), "It's a NanoWorld" exhibition
 - NanoKids (2)
 - Teacher-developed units (2)
 - NCSU simulations, UCLA nanotech labs
 - Visual Quantum Mechanics materials
 - ChemSense, NanoSense (tbd)

NanoSense

- Balance between academic learning, lab, and on the job training?
 - All equally important, tightly integrated (5)
 - Depends on level (5)
 - e.g., high school 40:50:10
 - college/adults slowly integrate more job training
 - What are the jobs? (2)
 - What internships are available to students?

Small Group Presentations

- Please fill out workshop evaluation
 - place in box on registration desk before you leave
- 9-10:15 am: 3 groups
 - Pathways and careers, concepts, hands on + TPD
- 10:15-12, 20 min presentations
 - Ideal practice (examples of materials, careers, etc.)
 - Problems, needs, or gaps
 - Core research questions
 - Grand challenges for the field
- Bob Tinker joining by phone, please use mic

Small Group Presentations (cont.)

- Please fill out workshop evaluation
 - place in box on registration desk before you leave
- 9-10 am: 3 groups
 - Pathways and careers
 - Concepts
 - Hands on and teacher professional development
- 10-12, 15 min presentations, possible slides
 - Ideal practice (examples of materials, careers, etc.)
 - Problems, needs, or gaps (don't dwell :)
 - Core research questions

NanoSenser Grand challenges for the field

