NanoSense

Agenda: Day 1 (Tuesday)

- Introductions, survey summary (9-10:15 am)
- Atlas of Nanoscience, Q&A (10:30-12 pm)
- Lunch and topic/group selection (12-1 pm)
 - Concepts, hands-on experiences, jobs, pathways
- Small working groups (1-5 pm)
 - Identify best practices, needs, approaches (c.f. NABC–Needs, Approach, Benefits, Competition)
 - Shift at 3, except moderator and recorder
- Report progress (5-5:30 pm)
 - 5 minutes each group on progress, plans for presenting tomorrow
Agenda: Day 2 (Wednesday)

- Breakfast (8:30)
- Groups finalize presentations (9-10 am)
 - On the order of 5-10 slides per group
- Groups present, 15 min each (10-11:30)
 - A few industry guests will join
- Discussion, reflection, next steps (11:30-12:30)
- Lunch and workshop evaluation (12:30-1:30)
 - Planning collaborations and joint grant proposals?
- Workshop report writing (afternoon)
 - Workshop staff, volunteers who are interested
Introductions

- Half a minute each
 - Name
 - Affiliation
 - Primary occupation
 - One or two sentences about your primary interests related to nanoscience education, and/or what you’d like to get out of this workshop
Survey Summary

- What should nanoscience education be?
 - undergraduate (6), high school (5), general public/out-of-school (4), teachers (1)
 - “true cross-disciplinary effort”
 - “exciting way to teach traditional science concepts”

- What should students know starting college?
 - Intro to chemistry (8), physics (6), biology (6), math (3), computer science (2), engineering (2), earth (1)
 - NSES and appreciation for practice, implications
 - Bonding, forces, atomic structure, friction, solubility
 - Problem solving/communication skills (3)
Survey Summary (cont.)

- What concepts should HS students learn?
 - Chemistry: organic; atomic structure, bonding, oxidation and reduction, adhesion, absorption, adoption, electrochem, periodic table
 - Physics: electronic and magnetic properties, electro-optical interaction, density, energy, forces
 - Biology: cells, molecules, DNA, protein
 - Math: calculate forces, metric system, scientific notation
 - Size and scale
 - Knowledge of applications
 - Problem solving, communication, how to learn
Survey Summary (cont.)

• Better taught as interdisciplinary, integrated courses or through traditional disciplines?
 – Both, depends (8)
 – Prefer interdisciplinary (8) in ideal world
 • easier at upper level (1)
 • more interesting for students, especially females (1)
 – More examples in disciplines (3)
 • especially chemistry (2)
 • change is slow in academia, best bet is to integrate in disciplines (1)
 – “We lack research…whether or not an integrated or independent approach… is most effective”
Survey Summary (cont.)

• Most crucial foundational concepts?
 – Unique properties at nano vs. macro level (e.g., nanogold vs bulk gold) (4)
 – Surface technology/effects (4)
 – Size and scale (in time and space) (5)
 – Self-assembly (3)
 – Fabrication, control, tools (2)
 – Sense of statistics/averaging (2)
 – Measurement, bonding, forces, energy, quantum states, magnetism (~2)
 – Practical applications, jobs, integrated research (3)
 – Ethics, implications (2)
Survey Summary (cont.)

• Favorite examples?
 – Common examples
 • Self-cleaning clothes/nanofabrics (3)
 • Quantum dots, gold nanoparticles as sensors (3)
 • Clear sunscreen (2)
 • Energy from nano solar panels, clean hydrogen fuel (2)
 – Nanofilters, nanotubes, ferro fluids, STM
 – Need everyday hooks (clothes, hobbies, cool stories, curious phenomena)
 – Molecular Workbench modules
 – Nanofog, nanomayonnaise, Tobacco mosaic virus, T4 bacteriophage, self-cleaning toilets, gecko
Survey Summary (cont.)

• Role of lab experiences?
 – Labs critical (everyone), demos good/okay
 – Assist deep learning, facilitate soft skills
 • Interacting with others, reasoning
 – Should be integrated with lecture
 – Interactive playground
 • Computers, instruments, group tables, remote cameras
 – AFM lab/models, self-assembly demonstrations with magnets or foam, nanomanipulator to explore surfaces
Survey Summary (cont.)

- Recommended tools and materials
 - Molecular Workbench tools, Chemica (5)
 - MRSEC materials (3)
 - AFM (actual, and/or Scharberg’s wood model) (2)
 - Nanomanipulator (2)
 - NanoZone (2), “It’s a NanoWorld” exhibition
 - NanoKids (2)
 - Teacher-developed units (2)
 - NCSU simulations, UCLA nanotech labs
 - Visual Quantum Mechanics materials
 - ChemSense, NanoSense (tbd)
Survey Summary (cont.)

- Balance between academic learning, lab, and on the job training?
 - All equally important, tightly integrated (5)
 - Depends on level (5)
 - e.g., high school 40:50:10
 - college/adults slowly integrate more job training
 - What are the jobs? (2)
 - What internships are available to students?
Small Group Presentations

- Please fill out workshop evaluation
 - place in box on registration desk before you leave
- 9-10:15 am: 3 groups
 - Pathways and careers, concepts, hands on + TPD
- 10:15-12, 20 min presentations
 - Ideal practice (examples of materials, careers, etc.)
 - Problems, needs, or gaps
 - Core research questions
 - Grand challenges for the field
- Bob Tinker joining by phone, please use mic
Small Group Presentations (cont.)

- Please fill out workshop evaluation
 - place in box on registration desk before you leave
- 9-10 am: 3 groups
 - Pathways and careers
 - Concepts
 - Hands on and teacher professional development
- 10-12, 15 min presentations, possible slides
 - Ideal practice (examples of materials, careers, etc.)
 - Problems, needs, or gaps (don’t dwell :)
 - Core research questions
 - Grand challenges for the field